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Differential equations of the type (1.1) containing a small parameter have 

found applications in many different problems. 

The small parameter in the coefficient of the highest derivative cor- 

responds to the presence of a boundary layer or some boundary effect. In 

such cases the approximate methods usually employed are inapplicable for 

practical purposes (i.e. such methods as the use-of power or trigonometric 
series, interpolations and others). In the application of the asymptotic 

method, the presence of the small parameter does not lead to difficulties; 

on the contrary, it brings about simplifications. The process of numerical 
integration of a differential equation can be eliminated, because the 

general solution can be expressed in terms of known tabulated functions- 

exponential, Bessel functions and others. 

In the use of the asymptotic solution one meets difficulties if the 

coefficient q(x) in (1.1) has a simple zero within or on the boundary of 

the interval under consideration. (This is the case, for example, in the 

analysis of torus-like shells containing sections where the normal to the 

meridian is parallel to the axis of rotation, and also in the analysis of 
pipes with curvilinear axes. An example where the coefficient becomes 

zero on the boundary of the interval is presented by the case of study of 

curved shells, when the coefficient q(x) vanishes due to the fact that in 
the edge section of the shell the centrifugal force vanishes. The same 

situation occurs in the study of rods). 

In these cases, the ordinary asymptotic solutions which can be expressed 
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by means of efx are inapplicable. For the solutions of the homogeneous 
equation one obtains asymptotic series which contain Airy functions in 

place of efx I l-8 1. 

In the present article there are considered asymptotic solutions of 

non-homogeneous equations and some of their applications [ 8 I. We note 

that some results along this 1 ine have been published in the works [ 9.10, 

111. 

The method presented makes it possible to obtain solutions in cases 

where q(x) has a zero of arbitrary order. * 

In Section 1 the equation (1.1) is reduced to a standard form; in 

Section 2 there is derived an asymptotic series for the solution of the 

homogeneous equation for the case when the small parameter has complex 

values; in Section 3 there are given contour integrals, power and asymp- 

totic series for special functions entering solutions; in Section 4 there 

is considered the case of real values of the small parameter (this is a 

singular case); in Section 5. a second form is given for the asymptotic 

solution of the non-homogeneous equation: in Sections 6 and ? there are 

given examples of the application of the method of computations of torus- 

like shells and rods and plates; in Section 8 there are given ta.bles and 

graphs of functions involved in the solution. 

1. Let us consider the differential equation 

where t is a small parameter, real or complex; the independent 

x is real; the coefficients in the equation are real functions 

variable 

possessing 

the necessary number of derivatives; the unknown function y and the right- 

hand part f may be complex-valued. In regard to the coefficients p and Q 
it is assumed that p(x) f 0, and q(x) Lecomes zero at one point only of 

the given interval (a, b). We may assume that this zero occurs at x = 0, 

where q(x) = xgI(x) and y,(n) f 0. 

* After the author had worked out the method presented here, he dis- 

covered the works of Reissner and Clark Lg.10 ] treating the nonrhomo- 

geneous equation 

if, -~ i;*z sin g = iph- cos 5 

and related equations. A comparison shows that the method of Reissner 
and Clark is different from ours and that their solution is less com- 
plete and precise than ours. The precision of their solution is, in 

particular, lower than the precision of the equations of the theory of 

shells (see below. Sections 2 and 6). 
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Without restr 

are positive. 

icting the generality, one may assume that p(x) and qI(x 

The equation (1.1) can be reduced to the form [1,2, 4- 7 I 

that is, to the form of the well known equation 

d% __ + tr, = 0 
dt2 

(1.3) 

with a right-hand side. For this purpose we replace the independent vari- 

able n in (1.1) by u, where u is the power series [5 1 in the parameter 

U = u,(z)-t EUr(5) + E2U2(5)$- . . . (1 .‘t) 

while the function y is replaced by n by means of the substitution 

1 
y = U’rj, 2L’ = - 

VT 
(1.5) 

where w is selected in such a way as to eliminate d? /du. 

The primes indicate differentiation with respect to x. The coefficients 

of the series (1.4) are determined by quadratures from recurrence diffe- 

rential equations. The expressions for the first two coefficients are 

0 

where the sign of uO is chosen the same as that of x, and 

1 
ul = g o u ,112 s -% dll: 

( 
5 = 2, [TV + (pv’)‘], 

‘he right-hand side of equation (1.2) is equal to 

* f f n----__ 
fil! 

h - pwu’~ Vpu’3 _- =-z- 

where the function g can be represented in the following form because of 

(1.4): 

g = go (Lx) + E,&yl (x) _I e2g2 (x) -k . . . 

We note the useful equations: 

pu@zo~2 = (I. pq2;a = 780, p7977” = 1 

By taking one, two, three or more terms of the series (1.4), we find 
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that the solutions of equation (1.2) yield asymptotic approximations of 

higher and higher order for the equation (1.1) [ 5 I. 

Let us introduce in place of x the complex independent variable 

t = pu (_P -A) (4.11) 

Equation (1.2) will then take the form 

$ .l_ lrr, = PR (1.12) 

For small values of c, the quantity g on the right- 

hand side of (1.12) will be a slowly changing function 

of t, because it changes as a function of l/p, as can 

be seen from (1.9) and (1.11). Fig. 1. 

‘Ihe solutions of the homogeneous equation (1.3) are Airy functions. 

Tables exist for these functions [2,3, 12-14 I, 

2. We shall find an asymptotic series for a particular solution of the 

equation (1.12) with a slowly changing right-hand side along the straight 

line t = pu of the complex plane t. ‘These straight lines pass through the 

origin t = 0 and through the point t = p. We shall call them p-lines. 

For practical applications it is necessary to obtain an asymptotic 

series for that unique solution, which, outside the neighborhood x = 0, 

is near the solution of the degenerate equation obtained by setting 6 = 0. 

The advantage of such a solution arises in connection with the boundary 

effect, because it makes it possible to satisfy the individual boundary 

conditions without the introduction of small differences. 

The solutions of equation (1.12) or (1.2)) by the method of the vari- 

ation of the arbitrary constants, can be represented in the form 

where h,(t), h,(t) constitute a fundamental system of solutions of (1.3). 

For the Wronskian we have the result 

(2.2) 

From the asymptotic expressions of Airy functions it follows that 
along any p-line, except for three lines containing the three singular 

rays (Fig. 1) 
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there exist solutions h, and h, that increase in absolute 

site directions according to a law given approximately by 

value in oppo- 

where c is a constant depending on arg t. 

Along the singular rays every solution tends to zero. The p-lines con- 

tain singular rays if and only if the parameter c = p-j is real. Let US 

first consider the case of a complex c. In Section 4 we shall return to 

the case of a real t. 

We denote by h,(t) that solution which increases as t changes from 
t=Otot=p. In the integrals (2.1) h,( pt ) and hp( pt ) are rapidly 

changing functions because p is a large parameter. 

Taking for g(t) Tayl or's formula (or series) 

6 (5) = 29 g'"' (m) (2.4) 

we obtain the final expression of the particular solution of the equation 

(1.2) in the form of a power series in l/p = E i/3, 

H = pe,(pu)g (u) + c,(~u)g'(u) $- $ eq(pll)gn(u) + . . . = 

-p 2 -$en(pu)s(“) (u) (2.5’ 

where n=o, 1, 2, . . . 

t 

en(t) = &- [h2 (t) \ h,(i)(~-l)“dT_-}z~(f)~hl(~~(~-t)”d~~ 

--ooP t 
(n = 0,1, 2, . . .) (1.6) 

In particular, the first asymptotic approximation is equal to 

H = pea (~4 g (4 
where 

e,(t) = + ['k,(L) f h,(7)& -+ hr (t) TJL2 (7)&j 

--ooP t  

lie general solution will be 

(2’7) 

(2.S) 

yi = H + c,h, -1 c,h, (2.9) 

‘Ihe functions e,(t) are completely determined on the p-lines and are 
the same for all equations (l.l); th ese functions are bounded on a p-line, 

since it follows from the asywtotic expressions of Airy functions h, and 
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h that e (t) l/t, e 
p*in the Ltegrals (2.6) 

3/t’, . . . astam. The limits - ~,p and M, 
are chosen for the purpose of obtaining bounded 

e,(t). 

Since y = ~7 by (l.S), by (2.9) we have obtained the general solution 

of the differential equation (1.1) in terms of Airy functions h,(t), 

h,(t) and the functions e,(t). 

Tables and graphs of the functions en(t) are given in Section 8. 

Remarks 1. From equation (1.1) it can be seen that for small e's the 

particular solutions will satisfy the formula y f/q, which fails to be 

valid only in the neighborhood of x = 0. The same result is obtained 

from formula (2.7) if one takes into consideration the asymptotic formula 

e,(t) t-l, given in Section 3, and the formulas (1.51, (1.8) and (1.10); 

but the formula (2.7) does not cease to be valid in the neighborhood of 

x= 0. 

2. When the parameter is absent from equation (1.11, i.e. when t = 1, 

the series (2.51, with p = 1, is of special interest because it represents 

the solution of the equation qfl+ tv = g(t). 

3. The series (2.5) makes it possible to estimate the errors of the 

solution obtained for shells by Clark and Reissner [ 9,lO I. The solution 

of Clark and Reissner differs from the first term of the series (2.51, 

but at the point x = 0 they are the same. Ilence, in the solution of Clark 

and Reissner there is neglected a quantity of order t 'Is. This error is 

greater, for example, than the errors made in the standard theory of 

shells in which E is proportional to the shell's thickness /L, and where 

one usually takes into consideration not only h1’j but also hii2. 

4. An estimate of the remainder term of the series (2.5) can be ob- 

tained either by means of (2.1) and (2.4), or directly from (2.5) making 

use of the boundedness of the functions e,(t). On the straight line 

t = pu we have ( e,(t) ( < A, where A is independent of n and t. From the 

expressions of e”(t) in terms of contour integrals (Section 3) it follows 

that on the straight line mentioned above, the values of 1 e,(t) 1 max tend 
to zero (as n + m) more rapidly than the terms of any geometric progress- 

ion, for the ratio of Ien+ ,(t) 1 max to lee(t) lmax decreases as n-l/j. 

'Ihe same holds for the derivatives e,‘(t,) and e,‘?.(t). ‘Ihe series 

(2.5), therefore, converges for a large class of functions g(u) and is a 

solution, because it formally satisfies the differential equation, as 

will be seen in Section 3, where there is also obtained an estimate of 

the remainder term of the series. If, for example, (p (R)(u) 1 < R”, where 

B = const, then, dropping all terms from P-"' on, and taking the indicated 

coarse approximation 1 e,(t) 1 < A, we obtain, for Ip I > 2B, the upper bound 
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of the remainder of the series 

R, = 2ABm+lp-n1 

This shows that the convergent series (2.5) also converges asymptotically. 

3. 1. The functions e,(t), e,(t), . . . can be expressed in terms e,(t). 

From (2.6) one can obtain, without difficulty, 

(n + 3) en+3 (t) + ten+, (t) -j- en (t) = 0 

This yields the equations 

e, (t) = 1 - te,(t) 

(n = 0. 1, 2, . . .) (3.1) 

e2 (t) = - + te, (t) = $- [Fe, (t)- t] 

e3 (t) = $ [- (t” -+ 2) e, (t) + P] 

. . . . . . . . . . . , . . . . . . . . 

(3.2) 

2. If in (1.12) and (2.5) we select g = 1, t, t2, . . . . we see that 

e(t), e,(t), . . . satisfy the differential equations 

e," -/- te, = 1 

el N + te, = - 2e,,’ 

en” -f- te, = - (2e,’ + eo) (3.3) 
. . . . . . . . . . . . . . 

e,” + te, = - (:!c~~_~ + e,_,) (n = 2, 3, 4, . . .) 

If one substitutes the series (2.5) into equation (l.2) one finds that 

the coefficients of all powers of l/p vanish because of equations (3.3). 

These equations are direct consequences of (2.6). Conversely, the 

differential equations (3.3) can serve for the determination of the 

functions e,(t); the functions e,(t) defined by the formulas (2.6) are 

the unique solutions of equations (3.3) which are bounded on the entire 

line t = pu, for all other solutions are obtained by the addition of 

clhl + c2h2. 

3. Let us use the notation L.(q j = T’<(t) + tq.lhe functions e,(t), 1, 

t, t2, 9, . . . are particular solutions of the equations 

L(7,) = 1, t, t', t3 + 2 - 1, t4 + 3 - 2t. . . . (3.4) 

respectively. 

In Section 5, the equations (3.4) will be used for the purpose of ob- 

taining the asymptotic solution in a form different from that of the 

series (2.5). 
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4. Solving equations (3.3) by the method of Laplace, one can express 

the functions e,(t) as contour integrals.* 

For the time being, while we are considering complex values of the 

parameter 6, let us select that value of p = c-l'7 for which p, and hence 

also the line t = pu, lie within the double sector (Fig. 1) 

(3.5) 

'Ihe solution of the first equation in (3.3) can be obtained in the 
form 

e,(t) = ~eq++)dz (3.6) 

6 

'lhis integral coincides with (2.8) in the double sector (3.5), for 

this is the only solution which is bounded on the entire line t = pu. 

The boundedness of the integral follows from the asymptotic series 

(3.111, which was obtained by the method of inversion, and which is valid 

in the sector - 2n /3 < argt < 2n/3. 'Ihe boundaries of this sector con- 
tain singular rays and correspond to the real values of the parameter c 

which will be considered in the next section. Let us note that on the ray 

t > 0 the integral is finite and asymptotically equal to l/t, while on 
the ray t + - ~0, the integral increases to infinity. 

Analogously, we obtain 

e,(t) = ~s2exp(-tz --$x3)dz etc. (3.7) 
0 

From these expressions it can be seen that 

e,(t) = e,(t) (3.8) 

It is, therefore, sufficient to have tables for e,(t) in the sector 

(3.5) which lies in the upper half-plane. 

* The function e,(t) is related to the generalized Airy integrals Ei? (a) 

and Si3(a) and to Lommel’s functions [ 15 1 . An analogous function on 

the imaginary axis is used in the said article by Clark and 
Reissner [ 9 ] . The functions Gi(x) and Hi(x) which coincide with eO (t) 

on the real axis where used in problems other than those dealing with 

asymptotic solutions in the works [ 16- 21 1. 
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that eO(t) is an infinite series with an 

e”(t)~eo(0)(1_~~“+~t~_4~t9~- ~1op_...)+ / 
+ e,’ (0) t (1 - + t3 + ‘2 t6 - ‘G t9 + . . . ) $- 

+ t2 i & _;t3+$5_3* tg ’ T . . . 
> 

(3.9) 

In view of (3.6), the initial values are 

e, (0) = 3-*‘“I’ ($-) = 1.287899, e,’ (0) = - 3-“‘I’ (:) =---0.938893 (3.10) 

From (3.6) and (3.2) one obtains asymptotic series for large value of 

t on the lines t = pu passing through the double sector (3.5): 

e,(t) - t + i 
(-lJk(3k-11)! 1 

h’=l (k - 1)! P-‘P+l 
=_-++$L... 

t 

el (t> - $ - 
z+..., e2 (t) - - f +$-... 

e3 (t) - - -i ++... (3.11) 

‘Ihe series show that the functions en( t ) tend to zero as t goes to in- 
finity. The graphs of the functions e,(t) are given in Section 8 for real 

and pure imaginary values of t. 

4. If e is real, one may select real values of p = 6 -l/7. Ihe values 

of t = pu then lie on the real axis (Fig. 1) of the t-plane containing 

the singular ray arg t = 0. 

One can preserve the form of the solution (2.5) and the relations 

(3.2) and (3.3) for the functions e,(t). It is, however, not possible to 

preserve the asymptotic property e,(t)- l/t on the entire real axis; one 

can, however, preserve this and the remaining asymptotic properties (3.11) 

separately for t > 0 and for t < 0 by taking for eO(t) different solutions 

of e0 “-t teO = 1, when t > 0 and t < 0. In case t > 0, we take as before, 

the solution (3.6). This is the only solution which decreases as l/t when 
t + 00. Hereby the power series (3.9) is preserved with the initial condi- 

tions (3.10). 

When t < 0, for e,(t) we select the solution 

(4.1) 

This is the only solution which decreases on the ray t < 0 as l/t, but 

other solutions are obtained, by the addition of solutions of the homo- 

0 
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geneous equation, which decrease as 

(-q-'.l esp [-&1,""] 

The initial values of the series (3.9) are obtained from (4.1) and 

they differ from the values (3.10) by the factor - l/Z; 

E,(O)= -$V r(i) = -0.643950 

E,‘(O) = ; 3-"'r[;j = 0.463446 

For the solution (4.1), i.e. not for the singular ray, 

(2.8) remains valid; the functions $(t) and h2(t) can Le 

the Airy integrals Ai and K(n). We should note that 

(4.2) 

the expression 

selected to be 

0 

s l3i(x)dx = 0 
--co 

With regard to the solution (3.6) it can be pointed out that it is 

connected to (4.1; by the relationship e,(t) - E,(t)= 1~ Ri(- t). ‘Ihe 

properties (3.2), '3.11) and others of e Ct) remarn valid for E,(t). 

graphs of these functions are riven in Sktion 8. 

The 

5. ?here exists another form of the as,mptotic solution of the non- 

homogeneous equation. We rewrite equation (1.2) in the form 

Analogously to (3.4), one easily obtains 

1 = L&PO kU)l? u = L(l), u2 = L(u) 

u3 =Llus-1 .2Epe,(pu)] 

?,L4 = L (U” - 2 . 3~) ET T. JJ. 

(5.1) 

(5.2) 

A particular solution of (5.1) is 

H = pe, (pu) (a, - 1 - ZU,E $- 1 . 2 - 4 . ~u,E* -. . .) + 

+(al+u,u+a3u2+~~~)-~(2~3u4+3~4a,u+4.5u,u2$...)+ 

+~~(2.3.5.6~~+3.4.6.7~~~+..-)+... (5.3) 

This solution can be written in the form 

H = pe,(pu)[g(O)- (9/(O)& + 'pr"(O)~~-. . .I+ 

+ 1% (u) - Yl &I E + (pa (u) E2 - . . . I 

(5.4) 
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Here 

‘po &> = R(U) - g ((3 
9 %+1 (u) = 

‘p,” (U) - ‘p,” ((3 

u u 
(n z 0, 1,2, . . .) (5.5) 

'Ihe expressions (5.3) and (5.4) are power series in the parameter E. The 

series (5.3) was given in another form (without the parameter but in 

powers of U) in a work by Miller and Zaki [ 1’7 1 , where this series was 

considered as the solution of the equation y’<- xy = x a$’ without any 

connection with the asymptotic solution of equation (1.1). The right-hand 
side g of the differential equation enters into the series (5.4) in the 

form of more complicated expressions than in the series (2.51, but in 

contrast with the series (2.5), the series (5.4) contains only eO (t). 

6. As an illustrative example let us consider the application of our 

theory to the analysis of toroidal shells. 

The solution of 
complete toroidal shells was first given by 

Clark and Reissner [ 9,lO 1 . ‘Ihe cornLining 

into one solution of trigonometric series 

and Hankel's function [ 22,23 1 is not advis- 

able, because the accuracy of the solution 
in terms of Hankel’s function is low for 

an asymptotic nature for 

small values of the parameter p, while for 
Fig. 2. large values and thin shells the evaluation 

of the trigonometric series is very cumber- 
some. This was pointed out in author's work [ 24 1 , where it was also 

stated that Hankel’s functions should be used for the asymptotic solution. 

Let us now consider the toroidal shell (Fig. 2) cut along the parallel 
e=- n/2 and subjected to a tensile axial force P and to uniform, normal, 

internal pressure P, I24 1 . 'be equations for the shell I22 1 can be 
written in the form 

(6.1) 

where V is the complex solution function, 

;I 
‘=i+asinO’ 

sin 0 
q = (1 + a sinO)2 ’ 

&=ro 
4 

(6.2) 

Here p is Poisson’s ratio, 6 is the thickness of the shell, so that 
p3 is a large parameter . 
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When8= 0, 01-o= _+n, the function q has a simple zero, and one may 
apply the above derived asymptotic solution to equation (6.1). 

Ihe parameter p = - il is 

pure imaginary. Therefore, one 

uses the graphs and tables of 

the functions e,(t) for pure 

imaginary t in the computations. 

On the graph (Fig. 3) there 

are shown the results of the 

asymptotic computation of a 

steel shell with R, = 16 cm, 

r 0= 5 cm, 6 = 3 run, P = 1000 kg, 

p, = 0. A comparison with other 

solutions is also shown; the so- 

lutions for which one or two 

terms of the series (2.5) were 

retained are shown by a dotted 

and by a solid curve respectively; 

the solution based on the Clark- 

Reissner [ 9 I method is shown Ly 

a curve made of dots and of short 

Fig. 3. 

line segments; the small circles along the solid curve show the solution 

obtained earlier I241 Ly means of trigonometric series. 

The asymptotic solution (5.4), with the retention of the zeroth and 

first degree terms in p, coincides with the trigonometric series solution 

indicated by the small circles. 

‘Ihe investigation has yielded the following results: 

1) The asymptotic analysis by the use of one or two terms of the 

series (2.51 or (5.4) gives quite good results, even for moderate values 

of the parameter p3; 

2) Considerably less accurate results are obtained by the method of 

Clark and Reissner (in which the relative error is of the order l/p, as 

was shown in Section 21. 

In order to illustrate the suitability of the asymptotic method for 
obtaining of computational formulas, we introduce the formula for the 

deflection of a toroidal shell. 

For a shell (Fig. 21 which is cut along the parallel 8 = - n/2, the 

separation of the cut edges, under the action of the axial force P and of 

the internal pressure p,, is equal to 
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Considering the first term only in (2.5) and recalling that, for large 

p, e,(t) decreases rapidly in both directions from 8 = 0, we obtain the 
asymptotic expression for the deflection 

A - $ )G!qj=~ +- [P + (2 - a) “r&I,] (6.3) 

For given dimensions R, and rO, and small enough shell thickness 6, 

this formula shows that the deflection is inversely proportional to the 
square of the shell’s thickness. 

If the pressure pn = 0, then the deflection is proportional to the 

radius r0 and is independent of R,. Such results are of importance in the 

design of structures. 

The asymptotic solutions (2.5) and (5.4) can also be applied to the 
investigation of pipes with curvilinear axis. 

We call attention to the fact that in 
the derivation of the formula (6.3) it is 

necessary to compute (with the aid of (3.6)) 

the integral 

On the basis of a property of the Fourier 
cosine transformation this integral is equal 

Fig. 4. to n/2. 

7. As a second example, we present the 
results of an investigation of a very thin curved steel blade rotating 

with great speed. 

‘Ihe differential equation of the curved blade is of the type (1.1); 

the role of the large parameter is played by the square of the angular 
velocity of the given blade [ 11,25 1 . 

For fast rotating blades the accuracy obtained from the first term of 
the series is sufficient, and the solution is given by simple formulas. 

‘lhe curves in Fig. 4 show that for high angular velocities there arises 
a strong boundary effect. Near the clamped end of the blade there takes 
place a concentration of the bending stress u (l); CT(*) is the tensile 
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stress). 

This indicates also that the curvature of the elastic curve is large 

near the clamped end. In the remaining part of the blade the elastic 

curve is near the special type of a cable-type, or chain-type curve, 

namely, it will approximate to the form of the elastic curve of a blade 

which does not resist bending relative to the axis of the minor rigidity 

of the cross-section. 

In the work [261 it is stated that one can usually carry out the 

asymptotic analysis of blades by means of the function e’“, avoiding the 

use of Airy functions. In the work [ 27 ] there is constructed such an 

asymptotic solution for propellers with variable pitch. 

8. 1. In Fig. 5 there are given graphs of en(t) and e,‘(t) for pure 

imaginary values t = iy; the primes in the notations of the curves in- 

dicate differentiation with respect to y. ‘Ihe graphs serve for the asymp- 

totic solut.ion of equation (1.1) for pure imaginary values of the para- 

meter c (for example, for the computation of shells see Section 61. 

Re en and Im en denote the real and imapinary parts: e, = Re e, + iIm e,,. 

Furthermore, den/dt = - ide”/dy . Th e graphs are given for positive y. 

For negative y , one can use the eveness of Re en and of d Im e,/dy and 

the oddness of Im en and of d Re e,/dy. 

Fig. 5. 

In the article [ 10 I there is given a table of values which is equi- 

valent to the e0 (t ) on the imaginary axis of t. 

2. Ihe graphs given in Fig. 6 represent e,(t 1 and en’.(t) for real 
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negative values of t, They are used, in particular, for the investigation 

and calculation of propeller blades (see Section 7). 

Fig. 6. 

Tables which are equivaient to tables of e. on the real axis are given 
in the works [ X,21 ] where the following notations are used 

e, (6) - --nGi (- t) 

E, (t) = xBi (- 1) 

3. For the asymptotic solution of equation ff. 1) one needs, in addition 
to the functions e,(t), in accordance with (2.9) also the Airy functions 

k&t> and +f. 

Their values are given in tables 114 1 for complex values of 1. For 

real values of t one can use tables given in t 2,3,12,13 I . 
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